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MAH‑3 [1, 2] code simulates nonstationary 3D
hydrodynamic multi-component flows with strongly
distorted interfaces.

Following from a priori information, the system to be
simulated is presented by a set of computational
domains.

In each domain, an unstructured hexahedral mesh is used.
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mesh fragment
a mesh cell containing a marker
in physical space (x,y,z)

unit cube in
parametric
space (ξ,η,ζ)

Structured hexahedral mesh

The relation between                         and   (ξ,η,ζ):



Mapping of an initial
triangular mesh of markers
at the contact boundary (and
a zoomed face):

  a) prior to initialization;

  b) after initialization.
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A triangular mesh is used for the description of the contact surface in a 3D space. Each nod of
the mesh is a marker, and the marker motion is defined by the velocity field of the medium.

The edges of the triangles define the relation between the markers at the contact surface, and
this stipulates the mesh topology

Creation of initial triangular mesh of markers

In detailed study of the contact boundary evolution we turn to the description of the contact boundary by
means of combined cells and Lagrange triangular mesh of markers, which is not connected with the mobile
Euler mesh of numerical integration area;

Required quality of the marker mesh is supported for the account:
 addition of new markers;
 re-mapping of the marker triangular mesh.
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CAddition of a new marker M

Addition of the marker

Example of adding new markers (and a zoomed face):
a)  prior to addition; 
b) after addition.



   Resolution of the “conflict”

Conservation of symmetry in 2D calculations
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3D view mesh of markers: a), c) – Y = const  and   b), d) – Z = const:
  a), b)   the requirement of symmetry is met;
  c), d)   the requirement of symmetry is not met.
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Triangular marker mesh remapping 

Marker M remapping :
a)  Marker M  and all triangles having M as a vertex;
b)  M displacement vector       ABM  obtained from triangle ABMSd

r

Unstructured triangular mesh on the contact surface: 
c) No remapping (6,500 markers); 
d) Remapping (2,500 markers)
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Rayleigh-Taylor instability. Evolution of regular perturbation in 2D cylindrical case (ρ2 /ρ1=10).
The interface is represented by a triangular mesh of markers.

a) 3D interface covered with an
unstructured triangle mesh;

b) Front view of the interface (full
markers mesh). It
demonstrates preservation of
2D-quality of the mesh of
markers;

c) 2D interface presented by the
mesh of markers as in b) with
the density field as a
background. An agreement is
shown between positions of the
markers and the mixed cells



  time=1.2 time=1.7 time=2.2 time=2.7

Rayleigh-Taylor instability (ρ2 /ρ1=1.1): growth of perturbations at the interface in 3D case
(at different times). The interface is represented by the triangular markers mesh.



Concentrations
If σ1A= 1,  σ2A= 0:    σ1ΔV = 1,  σ2ΔV = 0.
…

If σ1A > 0,  σ2A > 0,  σ1B > 0,  σ2B > 0:
σ1ΔV = ½(σ1A+ σ1B); σ2ΔV = ½(σ2A+ σ2B).

Markers and concentrations
If material 1 is absent in the new composition in B but
present in A, then σ1ΔV = 1,  σ2ΔV = 0.
…
If materials 1 and 2 are present in B, then similar to
the concentration method.

One of the basic requirements: two neighbor markers must be either in one cell or in neighbor cells.

For each marker, not only coordinates are stored, but also data on the difference cell where the
marker is added and on materials at different sides of the interface to which the marker belongs.

This marker information is quite sufficient to determine the “new” matter composition in each
difference cell for the next step, before treating convective flows.

With these data we can appropriately correct convective flows using markers and concentrations.
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The flow of fluids 1 and 2 in the cells A and B:
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Test problems:

1. Homogeneous translational motion: 2D and 3D tests to check material translation on a Eulerian
mesh both along mesh lines and at an angle.  One fluid is background and the other is shaped: for 2D,
a square or circle (in a cross-section in the third direction); for 3D: a cube or sphere.  These tests are
used to check numerical methods for ability to hold interface shapes.

2. Heterogeneous translational motion: very simple and effective 2D and 3D tests to adjust fluids
flows on a Eulerian mesh.  Physical processes are not involved since at any time  the velocity of any
point in the system is a function of only space and time.

All test problems have “exact” solutions.

Purpose:
1. Compare two interface reconstructing algorithms based on

the method of concentrations; and
the method of markers (i.e., interface reconstruction with an unstructured mesh of markers
which move in accord with convective flow calculation); and

2. Demonstrate the capabilities of the two methods.



Homogeneous translational motion
Two incompressible non-viscous non-heat-conducting materials move at a constant velocity
against a Eulerian mesh.

Initial configurations
              a) square or cube;    b) circle or sphere
The marker mesh is shown in white.

a) b)



2D calculation
 Calculation domain: a brick 350х350х15 divided into cubic cells
 Cell size: 70x70x3
 Fluid 2 is shaped as a cylinder generated by 1) a square 40х40;   2) a circle R=25.
 Free flow on boundaries along X and the others are rigid walls
 No density difference
 Initial velocity:  [1, 0, 0].
 Time step: 0.1, i.е.
 EOS: P = 0
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2D calculation
 Computational domain: a brick 350х350х15 divided into cubic cells
 Number of cells: 70x70x3
 Fluid 2 is shaped as a cylinder generated by 1) a square 40х40;   2) a circle R=25.
 Free flow on boundaries along X and Y, and the other boundaries are rigid walls
 No density difference
 Initial velocities:
 Time step: 0.1, i.e.,
 EOS: Ρ = 0.

[ 2 2, 2 2,0]

t=50 t=200 t=50 t=200

t=200t=50t=200t=50

0.01u h !
r
"

MM

MMMC

MC



3D calculations

 Computational domain is a brick of sizes 1)350х140х140 and 2) 2х0.5х0.5, div ided into cubic cells
 Number of cells: 1) 70x28x28 and  2) 64х16х16
 Fluid 2:    1) a cube of size 40х40х40 (8х8х8 cells)

                     2) a sphere of radius 0.15, centered at (0.25, 0.25, 0.25)
 Free flow on boundaries along X; others are rigid walls
 Density ratio: 1/10
 Initial velocity:  [1, 0, 0].
 Time step: 1) 0.001÷0.1 , i.e.,                                                      2) 0.0001÷0.0045, i.e.,
 EOS: Ρ = 0.

Cube and sphere volume fractions along mesh lines on three section of the computational domain
The marker mesh is shown in white and the isosurface for                       is in yellow.
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3D calculation

Computational domain: a brick of sizes 1) 350х350х350 and 2) 2х2х2, div ided into cubic cells
Number of cells:    1)  70x70x70;    2) 64х64х64
Fluid 2:
        1) a cube of size 40х40х40 (8х8х8 cells)
        2) a sphere of radius 0.15, centered at (0.25, 0.25, 0.25)
 Free flows on boundaries
 Density ratio: 1/10.
 Initial velocity:  [0.57735, 0.57735, 0.57735].
 Time step: 1) 0.001÷0.1, i.e.,                                                   2) 0.0001÷0.0045, i.e.,
 EOS: Ρ = 0
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Cube and sphere volume fractions on a diagonal section of the computational domain (inclined flow)
Interface: the marker mesh is shown in white and the isosurface for                 in yellow.0.43! =
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computed exact exact

2 2 2 2( ) /V V V V! = "

Error in σ2:

Volume delta:
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“Exact” solution (marked particles):  the
flow does nor reverse with time

t=0.0 t=1.5 t=3.0
T=2.0 T=8.0

“Exact” solution (the flow reverses with time) at times:
t=0 (points);   t=0.25T and t=0.75T (dashes);   t=0.5T (bold)
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Stationary velocity field
Time–reversed flow fields

Setting of the 2D calculations:
 Calculation domain – unit cube 1x1x1, divided into bricks

    Number of bricks:  1)  32x32x2         2) 64x64x2     3) 128x128x2

 Time step:   1) 0.004     2) 0.002    3) 0.001

 The cube is filled with fluid 1.  A cylinder filled with fluid 2 is inside the cube.  The cylinder is
generated round the Z axis; its base is a circle of radius 0.15, centered at (0.5, 0.75).
   Material distribution in mesh cells was defined by concentrations.

 Studied is cylinder deformation in the velocity field:

Rider W.J. , Kothe D.B. “Reconstructing Volume Tracking”, Jornal of Computational Physics 141, 112-152 (1998)

Heterogeneous translational motion



t=1.5

t=3.0

t=0.0

MM  - mesh
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Materials and their interface (white) at t=0.0,
t=1.5, and t=3.0 in the constant velocity field.
MC – method of concentrations; MM – method of
markers

Materials and their interface (white) at t=4.0 and t=8.0 in the time-
reversed v elocity filed, period T=8.0 on different meshes: MC – method of
concentrations; MM – method of markers
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Errors in 2D calculations on the cylinder in a time-reversible flow fields, period T
(convergence tests)

2T = 8T =

L1 convergence rates:
     concentrations ~0.9
     markers ~1.35

Error

Mesh

Error

Convergence exponent α:

α = 0.602

α = 0.371

α = 0.958 α = 0.978

L1 convergence rates:
     concentrations ~0.5
     markers ~0.97

then α= log(q1/ q2)/log(h1/ h2),
Let q1= £h1   and

α
    q2= £h2 ,

α

where q - L1 errors norms, h - mesh spacing

L1 errors norms:
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3D calculation
 Computational domain: a cube 1x1x1, divided into brick cells; number of cells: 32x32x32

 The cube is filled with material 1.  A sphere filled with a liquid (material 2) is put inside the cube.  The
sphere has a radius of 0.15 and is centered at (0.5, 0.75, 0.75). Material distribution in mesh cells was
defined by concentrations.

Constant time step: 0.004

 Studied is sphere deformation in a velocity field; velocity components:

Velocity component distribution along the
section x=0.5 and sphere at the initial time

0u x v y w z! ! + ! ! + ! ! =

1. Incompressibility condition holds:

2. No motion on boundaries (velocity components are zero)

t T=3. The system returns to the initial state at



T

Errors in 3D calculations at t=T:
  O - concentrations
  X - markers

The isosurface (dark red) obtained for                   , and contact surfaces (grey) at different
times;  the sphere in the time-reversed flow with period       ;  MC - concentrations; MM -
markers

0.23! =
T

Conclusion

─ The marker method requires more
resources, increasing the time of
calculation (<20%) .

┼ The marker method provides more
accurate interface reconstruction
(the requirement of symmetry is met).

┼ The marker method tracks
volumes more accurately.

═ Both the methods agree and give
good results
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